Copied to
clipboard

G = C2×C23.25D4order 128 = 27

Direct product of C2 and C23.25D4

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C23.25D4, C24.140D4, (C22×C8)⋊16C4, C4.3(C22×Q8), C4.47(C23×C4), (C23×C8).18C2, C8.57(C22×C4), C2.D873C22, C4.Q872C22, C4⋊C4.348C23, C23.75(C4⋊C4), (C2×C8).588C23, (C2×C4).185C24, C23.378(C2×D4), (C22×C4).822D4, (C22×C4).103Q8, C4(C23.25D4), C22.82(C4○D8), (C22×C8).565C22, (C23×C4).696C22, C22.132(C22×D4), (C22×C4).1506C23, C42⋊C2.285C22, C4(C2×C2.D8), C4(C2×C4.Q8), (C2×C8)⋊37(C2×C4), C4.85(C2×C4⋊C4), C2.2(C2×C4○D8), (C2×C4.Q8)⋊38C2, (C2×C2.D8)⋊44C2, (C2×C4)2(C2.D8), (C2×C4)2(C4.Q8), C22.35(C2×C4⋊C4), C2.24(C22×C4⋊C4), (C2×C4).239(C2×Q8), (C2×C4).151(C4⋊C4), (C22×C4)(C2.D8), (C22×C4)(C4.Q8), (C2×C4).1567(C2×D4), (C2×C4⋊C4).903C22, (C22×C4).496(C2×C4), (C2×C4).573(C22×C4), (C2×C42⋊C2).53C2, (C2×C4)(C23.25D4), (C2×C4)(C2×C4.Q8), (C2×C4)(C2×C2.D8), (C22×C4)(C2×C2.D8), (C22×C4)(C2×C4.Q8), SmallGroup(128,1641)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C2×C23.25D4
C1C2C22C2×C4C22×C4C23×C4C23×C8 — C2×C23.25D4
C1C2C4 — C2×C23.25D4
C1C22×C4C23×C4 — C2×C23.25D4
C1C2C2C2×C4 — C2×C23.25D4

Generators and relations for C2×C23.25D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, ce=ec, cf=fc, de=ed, df=fd, fef-1=e3 >

Subgroups: 364 in 256 conjugacy classes, 180 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C24, C4.Q8, C2.D8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C22×C8, C22×C8, C23×C4, C2×C4.Q8, C2×C2.D8, C23.25D4, C2×C42⋊C2, C23×C8, C2×C23.25D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C24, C2×C4⋊C4, C4○D8, C23×C4, C22×D4, C22×Q8, C23.25D4, C22×C4⋊C4, C2×C4○D8, C2×C23.25D4

Smallest permutation representation of C2×C23.25D4
On 64 points
Generators in S64
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 48)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(25 36)(26 37)(27 38)(28 39)(29 40)(30 33)(31 34)(32 35)(49 62)(50 63)(51 64)(52 57)(53 58)(54 59)(55 60)(56 61)
(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 41)(8 42)(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)(25 50)(26 51)(27 52)(28 53)(29 54)(30 55)(31 56)(32 49)(33 60)(34 61)(35 62)(36 63)(37 64)(38 57)(39 58)(40 59)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 64 47 33)(2 59 48 36)(3 62 41 39)(4 57 42 34)(5 60 43 37)(6 63 44 40)(7 58 45 35)(8 61 46 38)(9 25 20 54)(10 28 21 49)(11 31 22 52)(12 26 23 55)(13 29 24 50)(14 32 17 53)(15 27 18 56)(16 30 19 51)

G:=sub<Sym(64)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(25,36)(26,37)(27,38)(28,39)(29,40)(30,33)(31,34)(32,35)(49,62)(50,63)(51,64)(52,57)(53,58)(54,59)(55,60)(56,61), (25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,49)(33,60)(34,61)(35,62)(36,63)(37,64)(38,57)(39,58)(40,59), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,64,47,33)(2,59,48,36)(3,62,41,39)(4,57,42,34)(5,60,43,37)(6,63,44,40)(7,58,45,35)(8,61,46,38)(9,25,20,54)(10,28,21,49)(11,31,22,52)(12,26,23,55)(13,29,24,50)(14,32,17,53)(15,27,18,56)(16,30,19,51)>;

G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(25,36)(26,37)(27,38)(28,39)(29,40)(30,33)(31,34)(32,35)(49,62)(50,63)(51,64)(52,57)(53,58)(54,59)(55,60)(56,61), (25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,49)(33,60)(34,61)(35,62)(36,63)(37,64)(38,57)(39,58)(40,59), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,64,47,33)(2,59,48,36)(3,62,41,39)(4,57,42,34)(5,60,43,37)(6,63,44,40)(7,58,45,35)(8,61,46,38)(9,25,20,54)(10,28,21,49)(11,31,22,52)(12,26,23,55)(13,29,24,50)(14,32,17,53)(15,27,18,56)(16,30,19,51) );

G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,48),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(25,36),(26,37),(27,38),(28,39),(29,40),(30,33),(31,34),(32,35),(49,62),(50,63),(51,64),(52,57),(53,58),(54,59),(55,60),(56,61)], [(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,41),(8,42),(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23),(25,50),(26,51),(27,52),(28,53),(29,54),(30,55),(31,56),(32,49),(33,60),(34,61),(35,62),(36,63),(37,64),(38,57),(39,58),(40,59)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,64,47,33),(2,59,48,36),(3,62,41,39),(4,57,42,34),(5,60,43,37),(6,63,44,40),(7,58,45,35),(8,61,46,38),(9,25,20,54),(10,28,21,49),(11,31,22,52),(12,26,23,55),(13,29,24,50),(14,32,17,53),(15,27,18,56),(16,30,19,51)]])

56 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I4J4K4L4M···4AB8A···8P
order12···222224···444444···48···8
size11···122221···122224···42···2

56 irreducible representations

dim11111112222
type+++++++-+
imageC1C2C2C2C2C2C4D4Q8D4C4○D8
kernelC2×C23.25D4C2×C4.Q8C2×C2.D8C23.25D4C2×C42⋊C2C23×C8C22×C8C22×C4C22×C4C24C22
# reps1228211634116

Matrix representation of C2×C23.25D4 in GL4(𝔽17) generated by

16000
01600
00160
00016
,
16000
01600
0010
001516
,
16000
0100
00160
00016
,
1000
0100
00160
00016
,
16000
01600
0020
0068
,
4000
0100
001616
0001
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,1,15,0,0,0,16],[16,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,2,6,0,0,0,8],[4,0,0,0,0,1,0,0,0,0,16,0,0,0,16,1] >;

C2×C23.25D4 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{25}D_4
% in TeX

G:=Group("C2xC2^3.25D4");
// GroupNames label

G:=SmallGroup(128,1641);
// by ID

G=gap.SmallGroup(128,1641);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,352,2804,172]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations

׿
×
𝔽